Chapter 6: FORCE AND MOTIN II

1. In the figure a woman pulls a loaded sled of mass \mathbf{m} along a horizontal surface at constant velocity. The coefficient of kinetic friction between the runners and the snow is $\mu_{\mathbf{k}}$.
Which figure shows the correct free body diagram for the sled and load?

(a)

(b)

(c)

(d)

2. In question 2 , The equation of the forces acting on the load and sled (from Newton's second law) is:
(a) $\bar{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{k}=0$
(b) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{s}=0$
(c) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{k}=m \vec{a}$
(d) $\vec{T}+\vec{N}+\vec{F}_{g}+\vec{f}_{s}=m \vec{a}$
3. A $12 \mathbf{N}$ horizontal force pushes a block of weight $5 \mathbf{N}$ to make it move with constant speed, the value of the coefficient of friction μ_{k} is:
(a) 2.4
(b) 0.24
(c) 4.1
(d) 0.41
4. A car has a weight of $\mathbf{1 . 1 ~ \mathbf { N }}$ slides on the road with acceleration $\mathbf{a}=\mathbf{1 . 2 4} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$, what is the force of friction between the car and the road?
(a) -1.13 N
(b) -11 N
(c) -1.4 N
(d) -0.14 N
5. A $12 \mathbf{N}$ horizontal force pushes a block of weight $5 \mathbf{N}$ to make it move with constant speed, the value of the coefficient of friction μ_{k} is:
(a) 2.4
(b) 0.24
(c) 4.1
(d) 0.41

6. A block lies on a floor. If the maximum value $f_{\mathbf{x}, \max }$ of the static frictional force on the block is $\mathbf{1 0} \mathbf{N}$, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is $\mathbf{8} \mathbf{N}$?
(a) 10 N
(b) 8 N
(c) 2 N
(d) 18 N
7. A $470 \mathbf{N}$ horizontal force pushes a block of mass $79 \mathbf{k g}$ to make it move with constant speed, what is the value of the coefficient of friction μ_{k} ?
(a) 0.61
(b) 6
(c) 1.6
(d) 0.06
8. A block lies on a floor.If the maximum value $f_{\mathbf{x}, \max }$ of the static frictional force on the block is $\mathbf{1 0} \mathbf{N}$, what is the magnitude of the frictional force if the magnitude of the horizontally applied force is $\mathbf{1 2} \mathbf{N}$?
(a) 10 N
(b) 12 N
(c) 2 N
(d) 22 N
9. In the figure, block B weighs $711 \mathbf{N}$. The coefficient of static friction between the block and the table is $\mathbf{0 . 2 5}$ assume that the cord between B and the knot is horizontal

What is the magnitude of the tension T ?

(a) 205.2 N
(b) 355.5 N
(c) 820.1 N
(d) 1422 N
10. In question 9, the weight of block \mathbf{A} is :
(a) $\mathrm{T} \cos 30$
(b) $\mathrm{T} \sin 30$
(c) $\mathrm{F}_{\mathrm{g}}-\mathrm{T} \cos 30$
(d) $F_{g}-T \sin 30$

